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Overview

1. The balloon problem

2. Mathematical model for the analysis of par-

tially inflated strained balloons

3. Analysis of pumpkin balloon



The Balloon Problem: Design and Analysis
e Design - Determine the shape of a balloon to carry a payload of
weight L at a constant altitude.

o Typically, assume a statically determinate shape
(consider balloon system weight and hydrostatic pressure).

o Actual balloon is constructed from long tapered flat sheets of thin film
that are sealed edge-to-edge. Load tendons are attached along
each seam.

e Analysis - Estimate film stresses.
o Model the balloon as an elastic membrane
o Include elastic reinforcing load tendons

o Consider launch, ascent, and float configurations.

o Mathematical model for the analysis of strained/partially inflated bal-
loons supported by NASA Awards: NAG5-697, 5292, 5353.



Partially Inflated Balloons (same loading)
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Partially Inflated Balloon (Single Gore)




Partially Inflated Balloon with Lobes




Design Related Considerations



Natural-Shape Equations (0¢c = 0)

Axisymmetric membrane theory:
UMN, 1950s; further balloon development by J. Smalley, 1960-70s.
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Natural-Shape Balloons
Zero Pressure and Super-Pressure Designs
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o Zero-pressure balloons (pg = 0).
Typical missions are several days.
Open at base and need ballast to maintain constant altitude.

o Super-pressure balloon (pg >> bzya > 0).
Add sufficient pressure so that day/night volume changes are reduced.



Super-Pressure Natural-Shape Balloon

A developable (ruled) surface “Manufactured” design

o While the natural-shape design is axisymmetric, manufactured design
consists of piecewise ruled surfaces.

o ZP-balloons can handle the film stresses that are normally encountered.

o With a natural-shape superpressure design, available thin films are not
strong enough to contain the pressure, or too heavy, or too expensive.

o Solution: A pumpkin shape with very strong tendons.
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The Pumpkin Balloon

e Curvature in the hoop direction transfers load from film to the tendons.

e Increased tendon stiffness can be achived by tendon shortening
(there is a film/tendon mismatch!).
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Background on the Pumpkin Balloon

o J. Smalley coined the term pumpkin balloon. Extensibility of the film is
used to achieve the pumpkin gore shape (early 1970s).

o CNES built several small pumpkin balloons, cutting half-gore panels with
extra material (mid-late 1970s)

o Sewing techniques to gather material at gore seams
(N. Yajima, Japan, 1998, see Adv. in Space Res., 2000).

o NASA/ULDB - structural lack-of-fit (shorten tendons) + material properties
(W. Schur, PSL/WFF, 1998, see AIAA-99-1526).

e There are several versions of the pumpkin balloon. We will analyze a
NASA ULDB pumpkin design flown in 2001.
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Strain Analysis
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The Natural (unstrained) State of a Complete Balloon

Q, Q Q

Ng = 290 for the ULDB we consider here.
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Observations and EM-Model Assumptions

o Linear stress-strain constitutive law
o Isotropic material (E-Youngs modulus, V-Poisson'’s ratio)

o Constant strain model (T € Sgef «— T €Y95)

o Wrinkling via energy relaxation (Pipkin) - facets are taut, slack, wrinkled
o Energy relaxation allows a tension field solution

o Folds can be used to describe distribution of excess material.

o Load tendons behave like sticky linearly elastic strings

o Shapes are characterized by large deformations but small strains.

o Hydrostatic pressure is shape dependent
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Variational Principle for a Strained Balloon

Problem *
ForS € C,
Minimize: Er(S)=Ep+Ef+E+S+ St
Subjectto: V =\

S balloon shape

C  set of allowable shapes

Er Total energy

V  Volume

Ep hydrostatic pressure potential

E; gravitational potential energy due to film weight

E: gravitational potential energy due to tendon weight
S  strain energy of tendons

St strain energy of film

Problem * is discretized and solved by EMsolver - developed for balloon ap-
plications, written in Matlab (uses f m ncon - find minimum of a nonlinear
multivariable function with linear and/or nonlinear constraints).

Aspects of EM-model have been implemented in Ken Brakke’s Surface Evolver.
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Energy Terms

Hydrostatic Pressure: Ep = _/V pdv = —/S(%bzz-|— poz)R- ds

Film Weight: Ef = /WdeA
S

ng / d

Tendon Weight: E; = Zl wizds
= /0

ng gd

Tendon Strain: § = Zl A WS (Vi) ds, We(Vi) = gKe(JVi]® — 1).
i=

Film Strain: S = / Wi (G)dA, Wi (G) =3S:G;
Q
Strains: G = 3(C —1) - Green, C = FTF - Cauchy; F - Def. Grad.

Second Piola-Kirchoff stress tensor

S(G) = 1t_EV2 (G+vCof(G")).

Fine wrinkling: replace Wk by its relaxation W', allowing a Tension Field
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Energy Relaxation =—> Tension Field

In Pipkin’s approach decompose M into three disjoint regions:

S - Slack region: Cauchy-Green strains are both negative, &; < 0, & < O;
T - Tense region: both principal stress resultants are positive, Py > 0, o > 0;

U - Wrinkled region (U= M\SUT).

Classify each T) € Q
( 0, 61<Oand62<0,
%‘tEég, W <0andd, >0,
Wr (81,02:t,V,E) = § LtE®, 1 <0andd; >0,

z(lt—_E\)Z)(es§+ 52+ 2v5,3y),
W > 0and pz > 0.

*See FB and Collier, AIAA J, Vol 39, No. 9, Sept 2001, 1662-1672.
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Strained Pumpkin Balloon
(joint work with W. Schur PSL/WFF)
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Wrinkling Summary

2.9% slack tendons 2.2% short tendons
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Principal Stresses: Superpresure Natural vs. Pumpkin

(MPa) 2.9% slack tendons (c) 2.2% short tendons
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Stress Analysis Summary

t = 38um (1.5 mil)

Max Stress (stress resultant)

Tendon Slack 2.9% Shorten 2.0%
Meridional 78 MPa (17 Ibf/in) 0 MPa (O Ibf/in)
Natural
Hoop 78 MPa (17 Ibf/in) | 5.25 MPa (1.41 Ibf/in)
Meridional | 28 MPa (6.09 Ibf/in) 0 MPa (O Ibf/in)
Pumpkin
Hoop 40 MPa (8.70 Ibf/in) | 4.25 MPa (0.92 Ibf/in)
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Conclusions

e Pumpkin design (shape + tendon shortening)
offers a significant reduction in maximum stresses

compared to natural-shape superpressure design.

e The variational formulation and optimization based
solution process of EMsolver provides an analyt-
iIcal tool that is readily adaptable to other mem-

brane and gossamer structures.
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Appendices

e (2002) Comparison of EMsolver predictions with
measurements.
e Benchmark comparisons with ABAQUS
o (1998) Zero pressure natural shape;
EMsolver with virtual fold.
o (2001 - ) Spherical balloon with rope constraints;

EMsolver with strain energy relaxation.
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Compare EMsolver Predictions with Measurements

Joint work - Willi Schur (PSL/WFF); Tech. supp. - Roy Tolbert (NASA/WFF)

Measured Predicted Absolute Error Relative Error

M = M —P| IM —P|/M|
Diameter  4.0606 4.034 0.0266 0.0064
Z(Diam) 1.2846 1.239 0.0456 0.0354
Height 2.4102 2.449 0.0388 0.0160

Set-up for test vehicle inflations: Elevation (el) and azimuth (az) were recorded.

(a) Side view - elevation measurements; a 4 ft ruler was attached to an over-
head hoist and lowered until it was just touching the top of the balloon.

(b) Overhead view - azimuthal measurements, since it was difficult to lo-
cate the line of sight tangency point for az, the az-measurements are
probably not as accurate as the el-measurements.
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(b) Top view
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Benchmarks: ABAQUS and EMsolver

1998 Zero-pressure natural shape balloon. Analyzed single gore.
Joint work with W. Schur (PSL/WFF) for NASA Balloon Office

2001-present Spherical balloon with mooring ropes and rigid end caps.
Joint work with Laura Cadonati (Princeton/MIT) for The Borexino Project
(a solar neutrino particle detector experiment)
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Comparison of
EMsolver (virtual fold, K. Brakke)
and
ABAQUS (tension field, W. Schur)

ZP-natural shape
Joint work with W. Schur (1998)
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Borexino Containment Vessel (joint work with L. Cadonati Princeton/MIT)

Borexino Design 2200 8" Thorn EMI PMTs

Stainless Steel
Sphere 13.7m O

Nylon Sphere
8.5m O

Muon veto:
200 outward-

pointing PMTs

100 ton
fiducial volume

Nylon film
Rn barrier

Scintill ator

Buf f er
x Holding Strings :
Stainless Steel Water Tank Steel Shielding Plates
18m O 8m x 8m x 10cm and 4m x 4m x 4cm
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Borexino (continued)
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Principal Stress Resultants

Open System: P(0) = 96 Pa, P(2R) = 170 Pa

minimum principal stress spl (MPa)
3 . . . —e— ABA at seam
—e— ABA midgore
EM at seam
2 | —— EM midgore

(0] 2 4 6 8 10 12

maximum principal stresssp2 (M Pa)

arc length (m)
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